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INTRODUCTION 
 
Navy Experimental Diving Unit (NEDU) Technical Report 2-991 describes the rationale 
and procedure for using canister breakthrough prediction limits for rebreathers in 
Authorized for Navy Use (ANU) testing, which requires underwater breathing apparatus 
(UBAs) to be tested at multiple temperatures over the whole range of operationally 
relevant water temperatures.  Appendix A is excerpted from that report. The current 
report, a follow-on to NEDU TR 2-99, specifically continues NEDU’s explanation of the 
use of small samples to establish prediction interval bounds (in the special case where 
only one water temperature is used for testing) that describe the characteristics of 
carbon dioxide absorbent canisters in closed- and semiclosed-circuit UBAs 
(rebreathers).  The described method is useful for estimating how long a diver can 
safely use a rebreather during “quick-look” evaluations of new rebreathers.  Quick or 
“first-look” evaluations are designed to screen UBAs before the complete testing 
required for giving AMU (Approved for Military Use) status to a UBA. 
 
 

BACKGROUND 
 
NEDU first used regression techniques and confidence intervals to develop canister 
limits in its report TR 2-93, MK 16 Canister Limits for SDV Operations.2  Prediction 
intervals first appeared in NEDU TR 09-97, Recommended Canister Limits for the 
Draeger LAR V/MK 25 UBA Using 408 L-Grade and 812 D-Grade Sofnolime.3   
 
Definitions 
 
According to Devore,4 
 

A CI (confidence interval) refers to a parameter, or population 
characteristic, whose value is fixed but unknown to us.  In contrast, a 
future value of Y is not a parameter but instead a random variable; for this 
reason we refer to an interval of plausible values for a future Y as a 
prediction interval rather than a confidence interval. 

 

In keeping with standard statistical nomenclature, we refer to a “sample” as a set of 
observations or individuals from a parent population.  That parent population is usually 
referred to as simply the “population,” and we assume that its true characteristics are 
unknowable.  However, we can infer its characteristics from the statistical properties of 
the sample.  Sample sizes may range from two to hundreds, but in diving studies they 
are typically smaller than fifty.  For unmanned tests of diving equipment, a sample size 
of five is usually used.  
 

One-Sample Prediction Limits 
 
In the statistical literature, prediction limits are most often discussed with reference to 
regression.  Indeed, that is the manner in which such limits are used in studies of 
canister duration during AMU testing.  As described in TR 2-99,1 canister durations are 
temperature dependent, and thus complete canister studies use four or five test 
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temperatures in characterizing the canister.  Each test at each temperature is 
considered a separate sample. 
 
Each test temperature is a preselected value in the domain of the predictor variable 
(independent variable), x and the resulting correlated canister durations in minutes, are 
values for the response variable (dependent variable), y.  Predicted values for the 
response variable for values within the domain of the predictor variable are expressed 
using ŷ. 
 
Prediction limits can also be used when canister duration data is acquired at only one 
temperature.  Appendix A includes examples of such usage in the engineering statistics 
literature4-6.  For this report, since the data used was collected at a single temperature 
and regression analysis was therefore not used, the phrase prediction interval bounds 
more accurately describes the predicted canister duration, and will therefore be used 
exclusively.  

 
PROCEDURES 

 
To illustrate the methodology of one-sample prediction intervals, a textbook example is 
found on page 299 of Devore.1  In a journal article on the texture of frankfurters,7 the 
following percentages of fat were found in a sample of 10 frankfurters: 25.2, 21.3, 22.8, 
17.0, 29.8, 21.0, 25.5, 16.0, 20.9, and 19.5%.  The mean value of the percentage of fat 
for this data was 21.90%, and the standard deviation was 4.13%.  
 
Tests for Normality 
 
In principle, before applying confidence or prediction intervals to data, the data should 
be tested for normality.  One of the best known tests for normality is the Kolmogorov-
Smirnov (K-S) normality test.  In the frankfurter example, the Kolmogorov-Smirnov 
normality test yielded a K-S distance of 0.158 and an associated p = 0.601. For the K-S 
test, this is a passing value, meaning that the sample data seems to match the pattern 
to be expected if the data had been drawn from a population with a normal distribution. 
 
However, normality testing entails several caveats, so the positive results are not as 
reassuring as one might think.  First, the K-S test is not properly applied without the 
Dallal-Wilkinson-Lilliefors corrections, and not all commercial software uses those 
corrections.  Secondly, and more importantly, small sample sizes almost always pass a 
normality test.  So the test has little power to help the researcher decide whether 
parametric tests or nonparametric tests, are more appropriate. 
 
Tests of normality that are reputed to be better than the corrected K-S test are the 
Shapiro-Wilk normality test or the D’Agostino-Pearson omnibus test, a more generally 
useful test.  Due to the complexity of normality test interpretation, statisticians in human 
clinical trials often use a suite of tests to make their normality decisions.  An example in 
the anesthesiology literature8 analyzed experimental data thusly: the K-S, the Martinez-
Iglewicz, and the D'Agostino-Pearson Omnibus K2 tests were used to test continuous 
and numerical data for normality.  Skewed data were summarized as median (range) 
and analyzed for between-group differences via Kruskal-Wallis tests.  Exactly how these 
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statistical test results are used in the decision-making process is seldom, if ever, 
described in the literature. 
 
For our purposes, if small sample sizes result in data so skewed that normality tests — 
K-S or otherwise — are not passed, then the researcher should look for sample 
preparation or experimental problems.  The data, whether it be of fat concentrations or 
canister durations, should not be used to make predictions of anything.  
 
Confidence Intervals 
 
Once it has been demonstrated that the normality assumption of the data is reasonable, 
then the confidence interval (C.I.) on the mean for the data can be calculated for a given 
confidence level.  A confidence level percentile is defined as 100(1-α)%, where the 
significance level is α and confidence coefficient is (1-α).  The confidence coefficient is 
the proportion of times that the population is sampled that the C.I. actually does contain 
the population parameter of interest.  Typical confidence level percentiles used to 
express a C.I. are 90%, 95% and 99%.  For a selected confidence level percentile, the 
C.I. lower- and upper-confidence limits for the population mean, µ, are calculated using 
equation (1). 
 

[ 
     

  
     

]    ̅         ⁄        
 

√ 
                          (1) 

 

where        ⁄        
 

√ 
     is termed the margin of error,  ̅ is the mean of n sample 

observations, with a standard deviation, s, all of which have the same dimensional units. 
The right side critical value,       ⁄        is the value that serves as the boundary 

between sample statistics that are likely to occur from those that are unlikely to occur for 
the Student t-distribution with n-1, degrees of freedom for a confidence level percentile 
of 100(1-α)%.  In other words, the critical value is the lower bound limit of integration 
(the upper bound limit being infinity, ∞) for the improper integral of the probability 
density function (pdf) of the Student t-distribution having an evaluation of α/2.  
Alternately, it is the upper bound limit of integration (the lower bound limit being 
negative infinity, -∞) of the improper integral with the pdf as the integrand, yielding a 
cumulative distribution function (cdf) with a value of 1-α/2.  For the most common 
confidence level percentiles, the right side critical value can be read directly as found in 
tables of critical values for the Student t-distribution for various degrees of freedom 
(Appendix C), or computed as shown in Appendix D.  Due to the symmetry of the 
Student t-distribution, only the right side critical value need be listed in Appendix C or 
the (1-α/2) inverse cdf, computed in Appendix D.  
 
For the 10 frankfurter observations, n = 10; significance level, α = 0.05; the 95% 
confidence interval using equation (1) is 
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]    ̅             
 

√ 
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          [         ] 

 
That is, the 95% confidence interval for the estimate of the population mean of the 
proportion of frankfurter fat is 21.9 ± 3.0%. 
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Thus we conclude that if the sampling of size n, should continue many times, we are 
95% confident, that the sample means would be contained within the interval of 18.9 
and 24.9% fat. 
 
Prediction Intervals 
 
For a two-sided 100(1-α)% prediction interval (P.I.), to contain the mean of m future 
observations, independent and randomly selected described by a normal distribution is 
 

[ ̅       ̅     ]    ̅         ⁄         √
 

 
 

 

 
                      (2) 

 
where m is the future number of observations,          .  
 
A two-sided 100(1-α)% simultaneous prediction interval to contain the values of all m 
future randomly selected observations from a previously sampled population, that can 
be described by a normal distribution, can be calculated using either the normal 
distribution or the Student t-distribution approach.  Using the Student t-distribution the 
prediction interval is 
 

[             ]    ̅            ⁄         √
 

 
 

 

 
                      (3) 

 
where simultaneous indicates we are concerned with simultaneously containing all of 
the m observations within the calculated confidence interval with the selected level of 
confidence (note the difference in the lower percentile notation for the test-statistic 
between Equation 2 and Equation 3). In the case where m = 1 Equation 2 and 
Equations 3 are identical and the terms mean and simultaneous are extraneous.  
Therefore, where only a single future observation (m = 1) is made and using the 
frankfurter example, equation 3 yields 
 

[𝑦𝑙𝑜𝑤𝑒𝑟 𝑦𝑢𝑝𝑝𝑒𝑟]   𝑥̅   𝑡   𝛼   𝑚 ⁄   𝑛    𝑠   
 

𝑛
          [        7] 

 
The 95% prediction interval is 21.9 ± 9.8%, or 12.1 to 31.7%.  We interpret this result as 
follows: if in the future a single frankfurter is observed from the same population 
(assumed to be normally distributed) as that sampled, there is a 95% probability that the 
proportion of fat contained in the frankfurter would lie between 12.1 and 31.7%.  
 
Prediction interval calculations using the normal distribution approach, although not 
shown here, indicate prediction interval bounds similar to those calculated using the 
Student t-distribution when n > 10 and m = 1.  However, for cases where n < 10 or  
m > 1 the percent difference of the prediction interval bounds between the two 
approaches becomes more pronounced.  Under these conditions the Student t-
distribution approach provides more conservative prediction interval bounds than that of 
the normal distribution approach.  In terms of the prediction interval lower bound, the 
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student t-distribution approach provides a lesser (more conservative) value than the 
normal distribution approach.  Providing a more conservative prediction interval lower 
bound through use of the Student t-distribution approach lends itself well to more 
serious-minded applications like that found in the following section.  Figure 1. compares 
the two-sided prediction interval factors for the normal and Student-t distributions for a 
family of curves for m future observations at several values of n for α = 0.05. In each 
case the Student-t distribution provides a more conservative (wider) prediction interval. 
 
 

 
 

 

 
Figure 1. Comparison between normal and Student-t distributions 

two-sided prediction interval factors versus sample size for α = 0.05 
 
 

APPLICATION 
 
Canister Durations 
 
The following duration data (in minutes) were obtained from NEDU’s tests of canisters 
for a particular UBA tested at a single water temperature: 
 
121.6, 114.6, 118.9, 122.0, 114.8, 116.2, 106.0, 113.4, 109.7, and 112.8 
 
This single sample consisting of ten observations, represent the elapsed time from the 
start of CO2 inflow into the scrubber canister until the CO2 percentage in the canister 
effluent reached 0.5%. 
 

0

2

4

6

8

10

12

14

1 10 100 1000

m = 1

m = 2

m = 3

m = 4

P
e
rc

e
n
t 

D
if
fe

re
n
c
e

 

Sample Size, n 



 6 

The mean for this data was 115.0 min, and the standard deviation was 5.0 min.  
Assuming a normally distributed population, from Equation 1 the 95% C.I. for the mean 
was 111.4 to 118.6 min.  From Equation 2, the 95% P.I. was 103.1 to 126.9 min.  
 
That is, if the sampling were repeated many times with the same sample size of 10, 
from the same canister population tested under identical conditions, we anticipate that 
97.5% of the time the sample mean would be greater than 111 min.  It would not be 
likely to exceed 119 min. 
 
However, if a diver were, in essence, to make an observation during his next dive, then 
we predict that his canister would be likely to last longer than 103 min.  The chance that 
his canister duration would be less than 103 min is essentially only 2.5%. 
 
With our focus on diver safety, we are concerned about the chances that a diver’s 
canister will last less than the published canister duration — the duration he is 
expecting.  We are thus interested in m future prediction interval bounds (Equations 2 
and 3).  We have little interest in the mean or average duration of the canister under the 
same dive conditions and thus are less concerned about the confidence bounds on the 
mean (Equation 1). 
 
Monte Carlo Study 
 
One of the uses for Monte Carlo simulation techniques is in providing an intuitive 
interpretation of statistical equations.  We tested the equation for one-sample prediction 
interval bounds in just that manner, obtaining samples of various sizes from large 
populations meeting prescribed statistical distributions.  We used Mathcad (version 11, 
MathSoft; Cambridge, MA) to generate random numbers distributed normally (that is, in 
a Gaussian fashion) with a target mean of 115 min and a standard deviation of 5.0 min 
— figures matching the canister duration data determined in NEDU’s experiments. 
 

N = 50,000 
 

In our first sampling, 50,000 normally distributed pseudorandom data points were 
generated (Appendix D).  The mean for that large sample was 115.025, and the 
standard deviation was 5.001.  Due to the large sample size, the estimate on the 
population mean was tight: the 95% C.I. on the mean ranged from 114.98 to 115.07 
min. Using Equation 2, the 95% prediction interval bounds ranged from 105.22 to 
124.83 min. 
 
Based on the definition of the lower 95% prediction interval bound, 2.5% of the 
durations should have been less than 105.22 min.  In fact, that particular sample had 
1289 such durations, comprising 2.6% of the total data.  Thus, in this case the lower 
prediction interval bound defined by Equation 2 accurately predicted a canister duration 
that would be exceeded 97.5% of the time, and would not be exceeded only about 2.5% 
of the time.  
 

N = 100 
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In our next sample, 100 normally distributed pseudorandom data points were 
generated.  For a particular sampling, the sample mean was 115.51 min, and the 
standard deviation was 5.06 min.  The 95% C.I. for the true population mean ranged 
from 114.51 to 116.51 min — not as tight as in the first example, but nevertheless 
narrow and centered on the sample mean. 
 
From Equation 2, the 95% prediction interval bounds ranged from 105.43 to 125.59 min.  
Although the sample size of 100 was 500 times smaller than in the first example, the 
estimate for the lower 95% prediction interval bound varied only slightly — from 105.22 
min in the first instance to 105.43 min in the smaller sample. 
 
When the entire data set was sorted, only two “durations” were in fact less than 105.43 
minutes and returned a fraction of 0.02, as close as possible to the ideal fraction of 
0.025 for a sample size of 100.  
 
Inverse Cumulative Distribution Function 
 
A third method of estimating the lower 95% prediction interval bound can be found 
directly from the inverse cumulative probability distribution function (iCDF) for the 
normal population.  The iCDF takes a probability    ⁄  as an argument and returns a 

value (equal to or less than) for the random variable (assumed to be normally 
distributed) whose probability is the argument. 
 

The usefulness of the iCDF for normally distributed data is that it is not dependent on 
either an actual dataset or a dataset simulated by a Monte Carlo technique.  It is based 
simply on the mathematics of the normal distribution.  Since this function can be found 
from numerous sources, including statistical tables, we will not describe it in detail.  In 
Appendix D, the iCDF is represented by qnorm  sY ,,2 .  

 
Table 1 shows the result of multiple Monte Carlo simulations with the number of 
observations in each sample ranging from 3 to 50,000.  The last column shows the 
iCDF for the lower 2.5% value for a distribution with mean and s matching each dataset. 
 
Table 1. Analysis of multiple datasets produced by Monte Carlo methods. 

n Y  s CLlow CLup PIlow PIup iCDF 

50,000 115.02 5.01 114.98 115.07 105.22 124.83 105.22 

100 115.14 4.98 114.15 116.13 105.21 125.07 105.38 

30 114.65 4.91 112.81 116.48 104.43 124.86 105.21 

20 114.97 5.04 112.61 117.32 104.17 125.77 105.10 

10 115.17 5.05 111.56 118.78 103.19 127.14 105.27 

5 115.15 4.89 109.08 121.23 100.27 130.04 105.56 

3 114.71 4.62 103.22 126.19 91.74 137.67 105.65 

CLlow = lower bound of the 95% confidence interval, CLup = upper bound of the 95% 
confidence interval, PIlow = lower bound of the 95% prediction interval, PIup = upper 
bound of the 95% prediction interval, iCDF = inverse cumulative distribution function.  
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In the first Monte Carlo sampling (n = 50,000), for a probability of 0.025, a mean of 
115.02 min, and a standard deviation of 5.01 min, the iCDF yields 105.22 min.  That 
precisely matches the lower 95% prediction limit found from Equation 2.  
 
For the second sample with n = 100, the iCDF of the normal population for a probability 
of 0.025, a mean of 115.14 min, and a standard deviation of 4.98 min returned a value 
of 105.38 min.  That is reasonably close to the lower 95% prediction limit of 105.21 min. 
 
Figure 2 compares the values in the Table 1 iCDF column with the 100(1-α)% lower 
bound value for the prediction interval PIlow column using the percent difference 
calculated as the quotient of the difference between the values divided by their mean.  
The percent difference between these values ranges from 0% with an n of 50,000 to 
0.9% with an n of 20.  In other words, the estimated lower prediction interval bound is 
very close (within 1%) to what is expected on the basis of the properties of the normal 
population.  For a sample size of 5, the percent difference is about 5%. 
 
 

 
 

 
Figure 2. Comparison between iCDF and PIlow. 

 
 

CONCLUSIONS 
 
As described in engineering statistics texts, the use of one-sample prediction intervals is 
profitably applied to the testing of closed-circuit UBA canister durations.  Their use in 
“quick-look” evaluations of UBA complements their use in the complete UBA testing 
procedures described in NEDU TM 01-12 and Tech Report 2-99.  
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Calculating the iCDF for the normal distribution is mathematically complex requiring an 
understating of definite integral calculus.  However, without employing the rigors of the 
calculus, readily available statistics and mathematical software packages make finding 
approximations to those values straightforward.  The ease of making those 
computations makes it possible to predict a canister duration limit on the basis of an 
assumed mean canister duration and an assumed standard deviation.  It can also be 
used to compare prediction interval bounds based on Equation 2.  For sample sizes of 
10 or more, the resulting values should agree within a few percentage points.  
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Appendix A: Prediction Limits on Regression 
 
Some curve fitting software can plot not only the best estimate for fitted data but also 
confidence intervals on the best fit and prediction limits for the data.  One such software 
package is Systat’s Table Curve 2D (Systat Software Inc.; Richmond, CA), formerly 
made by Jandel Scientific (San Rafael, CA).  
 
For regressions, prediction limits are found from the following equations:1 
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which is the estimated standard deviation of the new predicted Y. 
 

The square root of the mean square error, √    is the standard error of estimate (fit 
standard error), se, and is calculated using: 
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where the constant coefficients b1 and b0, are the slope and y-coordinate of the  y-
intercept of the linear regression equation respectively, all summations iterate from 1 to 
n, with n being the number of bivariate pairs in the data set and the degrees of freedom 
are n-2. 
 

Since MSEse  , the fit standard error (root mean square error)  

 

   
  




















2

2

)(

1
1

XX

XX

n
sYs

i

h
enewh . 

 
Therefore, 
 

 
  




















2

2
1

1),21(ˆ..
XX

XX

n
sdoftYIP

i

h
eh   

 
 

 



 12 

Figure A-1, from NEDU TR 2-99, shows 1000 simulated canister durations distributed in 
a Gaussian fashion around mean durations.  In this simulation the mean durations were 
curvilinearly dependent upon temperature, much as they are in the MK 25 UBA. 

Figure A-1. 1000 simulated, normally distributed canister  
durations with curvilinear temperature dependencies. 

 
 
The innermost line is the best estimate for the mean duration as a function of 
temperature.  That line is surrounded closely by the 95% confidence limits on the mean. 
The furthermost curved lines mark the boundary for the 95% prediction interval.  As 
expected, about 2.5% of the data lies above the upper prediction limit line, and about 
2.5% lies below the lower prediction limit. 
 
Table Curve Equations 
 

Sum of Squares due to Error:    
2

ˆ
iii yySSE  , 

where i  = weight, iy = y data value, iŷ  = predicted y value, and n = number of data 

points. 
 

Mean Square Error:  
DOF

SSE
MSE  . 
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Degree of freedom:  mnDOF  , 
where m = number of coefficients (parameters) fitted. 
 

Fit Standard Error (root MSE):  MSESe  . 

 

  lXXlMSEtyIP  1)''1ˆ..  

 
Or 
 

  lXXlstyIP e  1)''1ˆ..  

 

where t = Student’s t for given confidence level and DOF, l = coefficient partial 

derivative vector evaluated at ix , and  1)' XX  = inverse of the design matrix typically 

found in regressions using matrices.2  
 
Compare this to 
 

 
  




















2

2
1

1ˆ..
XX

XX

n
stYIP

i

h
eh . 

 
To see how single-sample prediction limits relate to regression-based prediction limits, 
the canister durations (shown on page 3) obtained during actual NEDU measurements 
were replicated and assigned to three equally spaced temperatures.  Since the data 
sets at each temperature were identical, a linear model was applied to the data. 
TableCurve 2D, Version 4.0 was used for the fitting. Figure B-2 shows the results. 
 
Replication of the original ten data points to form thirty data points resulted in a lower 
95% prediction limit ranging from 104.2 to 104.5 min.  If we had published a canister 
limit based on that data, it would have been only about one minute longer than the limit 
chosen with the single sample.  The resulting published durations would differ by about 
1%. 
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Figure A-2. Prediction limits based on regression, for 
comparison to a single-sample prediction limit. 
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Appendix B: Textbook Examples 
 

1.  Scheaffer and McClave (1990), p. 292. 
 
Ten independent observations are taken on bottles coming from a machine designed to 
fill them to 16 ounces.  The n = 10 observations show a mean of 16.1 oz and a standard 
deviation of 0.01 oz.  Find a 95% prediction interval for the ounces of fill in the next 
bottle to be observed. 
 
Solution:  

n
st

1
1025.0   

 

10

1
1)01.0)(262.2(1.16  . 

 
With t0.025 based on 9 degrees of freedom, we get  
 
16.1 ± 0.024, or (16.076, 16.124). 
 
We are 95% confident that the next observation will lie between 16.076 and 16.124. 
 
2.  Scheaffer and McClave (1990), p. 293. 
 
A particular subcompact automobile has been tested for gas mileage 50 times.  These 
mileage figures have a mean of 39.4 mpg and a standard deviation of 2.6 mpg.  Predict 

the gas mileage to be obtained on the next test, with 1– = 0.90. 
 
Answer:  P.I. = 34.998, 43.802; C.I. = 38.784, 40.016 
 
3.  Scheaffer and McClave (1990), p. 293. 
 
It is extremely important for a business firm to be able to predict the amount of 
downtime for its computer system over the next month.  A study of the past five months 
has shown the downtime to have a mean of 42 hours and a standard deviation of 3 
hours.  Predict the downtime for next month in a 95% prediction interval.  
 
Answer:  P.I. = 32.877, 51.123; C.I. = 38.275, 45.725 
 
4. Scheaffer and McClave (1990), p. 292. 
 
In studying the properties of a particular resistor, the actual resistances produced were 
measured on a sample of 15 resistors.  These resistances had a mean of 9.8 ohms and 
a standard deviation of 0.5 ohm.  One resistor of this type is to be used in a circuit.  Find 
a 95% prediction interval for the resistance it will produce.  
 
Answer:  P.I. = 8.69, 10.91; C.I. = 9.523, 10.077 
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5. Vining (1998), p. 177. 
 
A company manufactures high-voltage power supplies with a nominal output of 350 
volts.  The production people are concerned that the process is beginning to produce 
power supplies with a true mean output voltage somewhat greater than the nominal 
value.  The last four power supplies tested at 351.4, 351.5, 351.2, and 351.6 volts. 
Conduct the most appropriate test at a 0.10 significance level, and construct a 90% 
confidence interval for the true mean voltage and 90% prediction intervals for the 
voltages. 
 

Ha:  > 350, t = 16.69, reject H0.  C.I. = 351.224, 351.626; P.I. = 350.976, 351.874 
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Appendix C: Upper Critical Values of the Student’s T-Distribution 
 
From http://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm 
 

 

 

df\p 0.40  0.25  0.10  0.05  0.025  0.01  0.005  0.0005  

1  0.324920 1.000000 3.077684 6.313752 12.70620 31.82052 63.65674 636.6192 

2  0.288675 0.816497 1.885618 2.919986 4.30265 6.96456 9.92484 31.5991 

3  0.276671 0.764892 1.637744 2.353363 3.18245 4.54070 5.84091 12.9240 

4  0.270722 0.740697 1.533206 2.131847 2.77645 3.74695 4.60409 8.6103 

5  0.267181 0.726687 1.475884 2.015048 2.57058 3.36493 4.03214 6.8688 

  

6  0.264835 0.717558 1.439756 1.943180 2.44691 3.14267 3.70743 5.9588 

7  0.263167 0.711142 1.414924 1.894579 2.36462 2.99795 3.49948 5.4079 

8  0.261921 0.706387 1.396815 1.859548 2.30600 2.89646 3.35539 5.0413 

9  0.260955 0.702722 1.383029 1.833113 2.26216 2.82144 3.24984 4.7809 

10  0.260185 0.699812 1.372184 1.812461 2.22814 2.76377 3.16927 4.5869 

  

11  0.259556 0.697445 1.363430 1.795885 2.20099 2.71808 3.10581 4.4370 

12  0.259033 0.695483 1.356217 1.782288 2.17881 2.68100 3.05454 4.3178 

13  0.258591 0.693829 1.350171 1.770933 2.16037 2.65031 3.01228 4.2208 

14  0.258213 0.692417 1.345030 1.761310 2.14479 2.62449 2.97684 4.1405 

15  0.257885 0.691197 1.340606 1.753050 2.13145 2.60248 2.94671 4.0728 

  

16  0.257599 0.690132 1.336757 1.745884 2.11991 2.58349 2.92078 4.0150 

17  0.257347 0.689195 1.333379 1.739607 2.10982 2.56693 2.89823 3.9651 

18  0.257123 0.688364 1.330391 1.734064 2.10092 2.55238 2.87844 3.9216 

19  0.256923 0.687621 1.327728 1.729133 2.09302 2.53948 2.86093 3.8834 

20  0.256743 0.686954 1.325341 1.724718 2.08596 2.52798 2.84534 3.8495 
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21  0.256580 0.686352 1.323188 1.720743 2.07961 2.51765 2.83136 3.8193 

22  0.256432 0.685805 1.321237 1.717144 2.07387 2.50832 2.81876 3.7921 

23  0.256297 0.685306 1.319460 1.713872 2.06866 2.49987 2.80734 3.7676 

24  0.256173 0.684850 1.317836 1.710882 2.06390 2.49216 2.79694 3.7454 

25  0.256060 0.684430 1.316345 1.708141 2.05954 2.48511 2.78744 3.7251 

  

26  0.255955 0.684043 1.314972 1.705618 2.05553 2.47863 2.77871 3.7066 

27  0.255858 0.683685 1.313703 1.703288 2.05183 2.47266 2.77068 3.6896 

28  0.255768 0.683353 1.312527 1.701131 2.04841 2.46714 2.76326 3.6739 

29  0.255684 0.683044 1.311434 1.699127 2.04523 2.46202 2.75639 3.6594 

30  0.255605 0.682756 1.310415 1.697261 2.04227 2.45726 2.75000 3.6460 

  

inf 0.253347 0.674490 1.281552 1.644854 1.95996 2.32635 2.57583 3.2905 
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Appendix D: Mathcad Implementation of Monte Carlo Analysis 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 Sample standard deviation: 

  

Degrees of freedom: 

  

Enter level of significance:  Confidence level:  

Confidence Limit determination: 

critical value: 

  

upper limit: 

  

lower limit: 

  

Prediction Limit determination: 

  

  

n 50000 A rnorm n 115 5( )

mean A( ) 115.025

s
n

n 1
var A( ) s 5.001

df n 1 df 5 10
4



 0.05 1  95%

t0 qt 1


2
 df









 t0 1.96

U mean A( ) t0
s

n
 U 115.069

L mean A( ) t0
s

n
 L 114.981

PIU mean A( ) t0 s 1
1

n
 PIU 124.827

PIL mean A( ) t0 s 1
1

n
 PIL 105.223
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i 0 n 1 C
i

if A
i

PIL 1 0 

shorts C shorts 1.289 10
3



fraction
shorts

n
 fraction 0.026

c qnorm 0.025 mean A( ) s( ) c 105.223

qnorm 0.05 mean A( ) s( ) 106.799




